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Abstract. The analysis of microwave observations over land to determine atmo-

spheric and surface parameters is still limited due to the complexity of the inverse
problem. Neural network techniques have already proved successful as the basis
of efficient retrieval methods for non-linear cases, however, first-guess estimates,

which are used in variational methods to avoid problems of solution non-uniqueness
or other forms of solution irregularity, have up to now not been used with neural
network methods. In this study, a neural network approach is developed that uses

a first-guess. Conceptual bridges are established between the neural network and
variational methods. The new neural method retrieves the surface skin temperature,

the integrated water vapor content, the cloud liquid water path and the microwave
surface emissivities between 19 and 85 GHz over land from SSM/I observations. The
retrieval, in parallel, of all these quantities improves the results for consistancy rea-
sons. A data base to train the neural network is calculated with a radiative transfer

model and a a global collection of coincident surface and atmospheric parameters
extracted from the National Center for Environmental Prediction reanalysis, from
the International Satellite Cloud Climatology Project data and from microwave
emissivity atlases previously calculated. The results of the neural network inversion
are very encouraging. The r.m.s, error of the surface temperature retrieval over
the globe is 1.3 K in clear sky conditions and 1.6 K in cloudy scenes. Water vapor
is retrieved with a r.m.s, error of 3.8 kg/m 2 in clear conditions and 4.9 kg/m 2 in
cloudy situations. The r.m.s, error in cloud liquid water path is 0.08 kg/m 2. The
surface emissivities are retrieved with an accuracy of better than 0.008 in clear
conditions and 0.El0 in cloudy conditiofis. Microwave land surface temperature

retrieval presents a very attractive complement to the infra-red estimates in cloudy
areas: time record of land surface temperature will be produced.

1. Introduction

Even after 20 years of global microwave satellite ob-
servations, the use of microwave data over land for the
retrieval of atmospheric and surface parameters is still
very limited. While the ocean surface has a low mi-
crowave emissivity _0.5 that produces good contrast
of atmospheric phenomena against a low brightness



very sensitiveto the pr,_senceof thin clouds. The sen-

sitivityof SSM/I to water vapor is very' low, except

in the most arid areas; so the results do not improve

on the fir:st-guess values. With an estimated accuracy"
of -,-0.1 kg/m _, the SSM/I retrieval does not properly'

characterize the thinner clouds (the majority) but the
cloud structures with higher liquid water content are
well delineated.

A further improvement in this variational inversion

scheme could be obtained by also retrieving the seven

surface emissivities as they undergo small day-to-day

changes induced by variations of the soil moisture, the

vegetation density', or the snow cover. However, in this

case, ten variables would have to be retrieved (Ts, WV,

LII'P plus the seven emissivities Emi, where i repre-

sents the 7 channels of SSM/I: 19GHz V, 19 GHz H,
22 GHz V, 37 GHz V, 37 GHz H, 85 GHz V and 85

GHz H; V for vertical polarization and H for horizontal

polarization) from the seven SSM/I brightness temper-
atures and additional information would be needed to

soh'e the problem. The monthly-mean emissivity values

previously computed could be used as first-guess (or, us-

ing more specifically the variational assimilation formal-

ism, the background) estimates of the surface emissivity
and the first-guess matrix of error covariances could be

calculated. There are several options: The covariance

matrix could be calculated globally for a given month,
estimated for a given type of surface, or even calcu-

lated for each single pixel considering all the monthly

mean emissivities for this pixel. The inversion scheme

would then rely very heavily on the representativity of

such covariance matrices, giving an important weight

to the statistical description of the emissivity relation-

ships. Given this difficult3' with the retrieval of the

surface emissivities with a variational method, another
inversion approach is considered.

Neural network techniques have already proved very

successful in the development of computationally effi-

cient inversion methods for satellite data and for geo-

physical applications [Escobar et al., 1993; Aires et al.,

1998; Chevallier et al., 2000]. They are well adapted to

soh'e non-linear problems and are especially designed

to capitalize on the inherent statistical relationships
among the retrieved parameters. Note that variational

techniques, as usually" implemented, do not account for

correlations among the retrieved parameters. However,

for many" ill-conditioned problems, the use of a first-

guess estimate is very important to regularize the in-

version process and the first-guess error covariance ma-

trix is also essential in 3D/4D variational assimilation
schemes since it controls the impact of the observations



Thisdistance• isdependenton tilea prioriinflormation
availableontheprobability"distributionfunctionsofthe
variablesinvolved.If theobservationsy are assumed to
be Gaussian distributed with zero-mean and without

other a priori information, the Mahalanobis distance

[Crone and Crosby, 1995] is optimal

_[9(_) - 9°]' < 9.9' [9(_) 9°], (3)>-i

where < 9" 9 t > is the covariance matrix of the ob-

servable quantities without measurement noise, y. This

procedure has to be applied to find an optimum so-

lution for each observation separately and can require

significant computational resources.

The second approach consists in estimating a general

mapping fl,nction gw, with parameters W, that is a

global mod _,1for y -_ . The parameters W are the results
of the mini nization of a cost function

/ D(_, x)P(x, '7), (4)

where _? :: 3w(y °) = 9w(y(x) + 7]), and P is the joint
probability distribution of the physical variables x and

the noise 77. The distance D(_?, x) is integrated over the

physical states and over the observation noise, so that
the model 3w is optimized globally over the range of

x and the noise. In practice, to minimize the previous

criterion, a data base is created, composed of a sta-
tistically representative sample of coincident variables

x and observations 9 ° and the estimation of the pa-

rameters I_" is made once ana for all using this dataset.

These schemes are called "global" inversions. After this

preliminary" step for the estimation of W, the inversion
of an observation is very fast since it involves only the

direct use of the model 9w.

The distances used for localized and global inversion
schemes invoh'es different variables. The first one works

on the brightness temperature space, the second one on

physical variable space. The optimum solueion in (4)

gives an estimation _: that is close to the true solution

z while the distance in (2) specifies that the brightness

temperatures 9(i), associated with the estimated solu-

tion a?, are close to the brightness temperatures y(x)
associated to the real solution z.

Inverse problems are often ill-posed since the exis-

tence and the uniqueness or the stability of the solution

is not always known [Vapnik, 1997]. This is especially

the case when the "forward" model, 9(z), is not lin-

ear; in our case the radiative transfer is not linear. To

regularize the inversion process, all a priori informa-
tion available should be used to constrain the solution,



Thisequationis theonlycomputationrequiredin the
operationalmode(oncethesynapticweightshavebeen
determinedbytile trainingprocedure).A biastermfor
eachneuronhasbeendeliberatelyomittedto simplify
thenotation,evenif it isusedin theneuralnetwork•

It hasbeendemonstrated[Horniket al., 1989; Cy-

benko, 19891 that any continuous function can be repre-

sented by a one-hidden-layer MLP with _igmoide func-
tions a.

2.2.2. Optimization Algorithm: The Back-

Propagation of Errors. Given a neural architecture

(functions used as transfer functions a, number of lay-

ers, neurons and connections), all t le information of the

network is contained in the set of all synaptic weights

W = {wij }. The learning algorithm is an optimization

technique that estimates the optimal network parame-

ters II" by minimizing a cost function C1 (IV), approach-

ing as closely as possible the desired function. The cri-
terion usually used to derive $1" is the mean square error

in network outputs

CI(W)= _ DE(_k(Y;W),zk P(Y, zk)dzkdY
• _2

(s)
where DE is the Euclidean distance between zk, the

kth desired output component, and 5:k, the kth neural

network output component and $2 is the output layer
of the neural network. Other contrast measures can

be used if a priori information is available. P(}', zk) is

the joint probability distribution function of Y and xt..

This criterion is just the integrated distance between a?

and x introduced in (4).

In practice, the probability distribution function, P(xk, Y),

is sampled in a dataset /3 = {(Y_,zk_),e = 1,...,N}

of A" input/output couples, and CI (II') is then approx-

imated by the classical least square criterion:

l N

all(w)= (9)
e=l kES2

The Error Back-Propagation alg_orithm [Rumelhart

et al., 19861 is used to minimize CI(W). It is a gra-
dient descent algorithm that is very well adapted to
the MLP hierarchical architecture because the compu-

tational cost is linearly related to the number of pa-

rameters. Traditional gradient descent algorithms use

all the samples of the data,set B to compute a mean Ja-

cobian of the criterion C1 (W) in equation (9). These al-

gorithms are called deterministic gradient descent. The

major inconvenience of this approach is that the de-

scent can be trapped in local rninima. In the present

application, a stochastic gradient descent algorithm is



radiativ(!transferequationglobaIly,onceandforalland
usesthedistributionP(x) for this purpose. This model

is then valid for all observations (i.e. global inversion).
To minimize this criterion, the neural network method

creates a dataset B = {(:r e, yO, :ra_): e = 1 .... , N} that

samples as well as possible all these probability distribu-

tion functions. Then, the practical criterion used during

the learning stage is given by:

N
1

C.2(W) = _ Z DE(gw(xb_'Y°_)'x_))2" (13)
e=l

To create the dataset B, we sample the probabA-

it)' distribution function P(x) by selecting geophysi-
cal states (:r _) that cover all natural combinations and

their correlations and by calculating ye = y(xe) with

the physical model (the radiative transfer model in this

case). Alternatively we could obtain these relation-

ships from a "sufficiently large" set of colocated and

coincident values of Y and x. For P_ we need a pri-
ori information about the measurement noise charac-

teristics; a physical noise model could be used, but if

all we have is an estimation of the noise magnitude,

then we have to assume Gaussian distributed noise 7?

that is not correlated among the measurements. For
P(xbtx) there are two situations. If a first-guess dataset

{xb_; e = t,...,N} exists, then x b_ can be used di-

rectly. If such a dataset is not available, we have to

determine P(e) (as it is done in variational assimilation

technique), the distribution of errors in the first-guess,
e = x b - x, and use x b = :r + s as input to the network.

The balance between reliance on the first-guess and the

direct measurements is then made automatically and

optimally by the neural network during the training.

Table 1 summarizes the specific features of the neu-

ral network scheme with first-guess and the variational
assimilation inversion technique.

[Table 11

3. Generation of a Data Base to.Train

the Neural Network

Two neural networks are trained: One for clear scenes

(NN1), one for cloudy scenes (NN2). They both retrieve

simultaneously the surface temperature Ts, the inte-

grated water vapor content WV, and the seven $SM/I
surface emissivities Em_s. In addition to these pa-

rameters. NN2 retrieves the cloud liquid water path
LII'P. Two sources of information are used for this

purpose: (1) seven SSM/I brightness temperatures (ob-

servations), and (2) a priori information of the state

of the surface and atmospheric variables from ancillary

datasets. In this study the experimental configuration is
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informationin theretrieval.
3.1.2. The useof the ISCCP dataset. In the

ISCCPdata.cloudparametersandrelatedquantities
areretrievedfromvisibh_(VIS ---0.6_m wavelength)
andinfrared(IR ,-,11_m wavelength)radiancespro-
videdbytilesetof polarandgeostationarymeteorolog-
icalsatellites[Rossowand Schiffer, 1999]. The ISCCP
dataset is used in this study to discriminate between

clear and cloudy scenes (selecting NN1 or NN2) and

to give estimates of the cloud top temperature and sur-

face skin temperatures. The pixel level dataset (the DX

dataset) is selected for its spatial sampling of about 30

km and its sampling interval of 3 hours [Rossow et al.,

1906].

3.1.2.1. The surface temperature first-guess:

ISCCP providesthe surfaceskintemperature first-guess

retrievedfrom IR radiancesunder clearconditions.The

IR emissivityof the surfaceis always close to 1 and

varieswith the land surfacetype as inthe GISS GCM.

Insteadofselectingthe closest-in-timeDX image to de-

rivethe surfacetemperature, a linearinterpolationbe-

tween two ISCCP surfacetemperature estimatesto the

precisetime of the SS._I/Ioverpass iscalculatedto ac-

count forthe diurnalcycle.Ifthe ISCCP DX scenesare

cloudy,a clearsky compositing procedure isconducted

within the ISCCP process to derive an estimation of

the surface temperature (see Rossow and Garder [1993]

for more details). The error associated with the sur-

face temperature is estimated to be 4 K [Rossow and

Garder, 1993].
3.1.2.2. Cloud a priori information: First the

ISCCP data helps discriminate between clear and cloudy
scenes. Over the ocean, it has been shown that the

VIS and IR observations have a better ability than

the microwave measurements to detect clouds [Lin and

Rossow, 1994]. Given that the sensitivity of the mi-
crowave to clouds over land is much lower than over

ocean, when a pixel is considered clear by the ISCCP

procedure, the LWP is fixed to zero. Two neural net-
work': are used, one .for clear scenes another for cloudy

scenes. The ISCCP cloud flag directs the retrieval to
one network or the other.

For cloud)' scenes, the cloud top temperature derived
from IR measurements is added to the retrieval process

as additional information, to account for the changes

in the emission temperature of the cloud and in the

cloud liquid water absorption coefficient. In contrast
to the ocean case, clouds induce only small variations
in the microwave radiation over land and additional

cloud information facilitates their detection. Prigent

and Ro_'sow [1999] showed that the ability to estimate
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length._,hasbeenrecentlydeveloped[Pardoet al.. 2000]

but is not used in this study because the differences on

SS.XI/'I frequencies are negligible.
Cloud absorption is calculated using the Rayleigh ap-

proximation which is valid for most non-precipitating

liquid water clouds at SSM/I frequencies. The cloud

temperature is assumed to be equal to the air temper-

ature at the same level. The dielectric, properties of

liquid water are taken from Manabe et al. [1987]. Scat-

tering by large particles is not considered meaning that

convective clouds and rain are not represented in the
data base.

The surface contribution is calculated using the monthly:

mean emissivities previously calculated [Prigent et al.,

1997, 1998] and assuming specular reflection at the sur-
face.

The consistency of the radiative transfer model has

been checked. Observed brightness temperatures and

simulated Tbs using the ISCCP Ts and LWP, the

NCEP I.VV, and the monthly Emis have been com-

pared for two months Of SSM/I data globally over snow

and ice-free pixels: For all channels, the bias is smaller

than 0.5 K even for cloudy cases. Thus, the training

dataset generated with this radiative transfer model and

sources of global data accurately represents the distri-

bution of these parameters that SS.M/I observes.

3.3. Statistical Analysis of the Training Data
Base

The training data base generated by the RT model

applied to the ISCCP, NCEP and monthly Era_s datasets
contains the variables to be retrieved (Ts, IVY, LWP,

and the seven Emi), the seven simulated brightness

temperatures Tb, and a priori information on the cloud

top temperature Tc and the temperature of the lowest

layer of the atmosphere Ta. An error is associated with
most variables that are used as first-guesses. The data

base is produced from data collected for January and
June 1993 over land between 60°S and 80°N. Snow or

ice covered pixels ave not considered: The snow and ice
information comes from the NOAA operational analy-

sis. 1,391,671 samples are collected, 55% of them cor-

respond to cloudy scenes.

Figure 3 shows the "global" distributions of some of

the variables in the training data base. The distribu-
tions are non-Gaussian and some of them are truncated.

Non-Gaussian distributions are often indicators of non-

linear behavior [Burgers and Stephenson, 1999; Palmer.

1999]. For example, the liquid water path distribution
has its maximum at the lowest values and obviously can-

not be negative. When retrieving such a variable with

Figure 3 i
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perature with brightness temperature is high_'r for the

vertical polarization than the horizontal one. This can

be explained by less variability in the emissivities for the

vertical polarization than for the horizontal one. Cor-
relations between surface temperature and brightness

temperatures at vertical polarization are similar at all

SSM/I frequencies, which was not anticipated. At 22
and 85 GHz, water vapor absorption was expected to

impede a direct relation between surface contributions

and top of the atmosphere measurements and as a mat-

ter of fact, derivatives of the brightness temperatures

with surface temperature (sensitivities) are smaller at
22 and 85 GHz than at 19 and 37 GHz [Prigent et al.,

1999]. Other authors have also observed large correla-
tions at 85 GHz between surface air temperatures and

Tbs at 85 GHz. MacFarland et al. [1990] investigated

the correlati,,n between SSM/I observations and sur-

face air temp :rature and concluded that 22 and 85 GHz

measurements, depending on the surface type, are the
most sensitiv:_ to the land surface temperature. Basist

et al. [1998] flso proposed a method to retrieve near-
surface air tenperature from SSM/I that relies heavily
on the 85 G_I:_ channels. These results can be explained

by two factors. First, for a given polarization, the sur-
face emissivit es at 19 GHz are more variable than at

other frequencies because of higher sensitivity to sur-

face properties like soil moisture or vegetation water
content and structure. These emissivity variations are

not correlated with to surface temperatures fluctuations

as indicated by, the correlation coefficients between Ts

and emissivity at 19 GHz (see Table 2). Secondly, the

absorption at 22 and 85 GHz actually dumps the ef-
fects of emissivity fluctuations, enhancing the relation-

ship between brightness temperatures and surface tem-

perature. The global correlation coefficients in Table 2
may not be representative on a local scale. However,
correlation coefficients for Ts have been calculated for

three ranges of atmospheric water vapor amount and

emissivities and no significant differences were observed

in the coefficients._.
Global correlations between atmospheric water va-

por and brightness temperatures are relatively' low es-

pecially" for vertical polarization because of large surface
emissivities reducing the contrast between atmospheric
and surface emissions. Even for horizontal polarization,

global correlations never exceeds 0.6. However, these
global values mask large local differences. Correlation
coefficients calculated for different ranges of emissivities

and water vapor amounts show that the results are very

different, especially" for the 85 and 22 GHz channels de-

pending on water vapor amount. As a consequence, the



scribesthevarietyof thesituationsto beanalyzed.

4. Results from the Neural Network

Inversions

Two neural networks have been trained, one for clear

pixe[s (NNI) the other one for cloudy pixels (NN2),

both using a priori information. The ISCCP cloud flag

discriminates between clear and cloud), pixels. The ar-

chitecture of the network NN1 is an MLP with 17 inputs

coding the 7 SSM/I observations y0 and the first-guess

xb (Ts, Ta, II'l', and 7 Emi), 30 neurons in the hid-

den layer, and 9 neurons in the output layer coding

the retrieval x (Ts, WI', and 7 Era,). The number of

neurons in the hidden layer is estimated by a heuris-

tic procedure that monitors the _eneralization errors of

the neural network as the confif.uration is varied. The

network NN2 has one additional input, the cloud top

temperature Tc, and one addit onal retrieval, the liq-

uid water path (LWP). The inmt variables and their
associated standard deviation er'ors are summarized in

Table 3. The full matrix of the error covariances is

calculated at the end of the trai ring phase (not shown

here). This matrix gives the statistical structure of the

errors and is of great importanc_ in the assimilation of

retrieved products in a Numerical Weather Prediction
scheme.

For each variable, the distribution of the first-guess
error is a Gaussian truncated at 2 standard deviations.

In contrast to variational method, where only Gaussian
distributions can be used, the neural network method

can use any distributions shape. However in the present
stud5', no in situ data are available to calculate the dis-

tribution of the first-guess errors, so Gaussian noise is

introduced independently on each variable to generate
the first-guess. In the operational mode with real first-

guesses, the technique will use the structure of the first-

guess error correlations and the results should be even
better.

Figure 4 presents the learning curves of the neural

network for clear and cloudy situations with and with-

out first-guesses. To measure the impact of the intro-

duction of the first-guess information in a neural net-
work inversion scheme, two additional networks have

been trained without first-guesses, one for clear con-

ditions and another for cloudy scenes. The architec-
tures of the the networks without first-guess are similar

in structures, except that there are only seven inputs,

coding the SSM/I observations y0. For each retrieved

variable, the r.m.s error decreases from the first-guess
r.m.s, error to a stable value after several iterations.

The networks with first-guess irput show substantiaIiy

LTable 3j

[Figure 41

17
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exploitthespectraldependenceof thefirst-guessemis-
sivitiesto provideamoreaccurateestimateofboththe
emissivitiesandthesurfacetemperature.

4.2. Water Vapor
_I'I" is retrievedwith a relativeerrorof --- 30c7c for

both clear and cloudy situations= when using a first-

guess. This is a small improvement over,the first-guess
r.m.s, error of 40_. The errors are not significantly

different in presence of clouds. With the variational

method [Prigent and R_Jssow, 1999], the retrieval er-

rors were found to increase with decreasing emissivities

and to increase in presence of clouds as expected from

the sensitivity of the radiative transfer to the various

parameters. As observed in Table 2, the correlation be-

tween the brightness temperatures and WV is rather

low (maximum of ---0.6 globally'), and the neural net-

work scheme is likely to exploit water vapor correlation
with another variable to extract water vapor informa-
tion when direct correlation between Tbs and WV is

not sufficient. It is worth mentioning that the neural

network is trained to minimize the absolute WV error

difference not the relative error in WV. Changes could

be made to minimize the relative error if this option

were preferred.

4.3. Cloud Liquid Water Path

For LWP, the r.m.s error is 0.08 kg/m 2 globally,. As

expected, the error is larger in areas of high emissiv-
ities where the contrast between the land surface and

the cloud is smaller. Even in areas of low emissivities

(0.85_<emissivity19H <0.9), the accuracy of the retrieval
is not suitable for detection of majority if clouds. The

cloud flag from ISCCP is of importance in this case to
direct the retrieval toward the appropriate neural net-

work. However, cloud structures with large liquid water

path can be detected whatever the surface type; Plate
1 shows several extended and thick clouds that are also

present on the ISCCP images (not shown). Plate 1 does

not show any' evidence of LWP errors (discontinuities)

related to strong emissivity, gradients.

4.4. Land Surface Emissivities

When using a first-guess, the neural network tech-

nique shows a good aptitude for retrieving land sur-
face emissivities with an r.m.s, error lower than 0.008

(0.010) globally' for all channels, in clear conditions

(cloudy" conditions respectively). This is an improve-
ment over the first-guess errors. Unaided by' the first-

guess estimate, the neural network technique does not
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4.6. Analysisof the Neural Network
Sensitivities

Aninterestingcapabilityoftheneuralnetworktech-
niqueisthat theadjointmodeloftheneuralnetworkis
directlyprovided[Aireset al., 1999]. The computation

of this adjoint model (or neural Jacobians or neural sen-

sitivities) is analytical and very fast. Since the neural
network is non-linear, these Jacobians are dependent on

the situation x. For example, the neural Jacobians in

our example of equation (7) (an MLP network with one

hidden layer) are:

0y_ Z tc'j_ tuUy_ w u
3ES1

where or' is the derivative of the transfer function a.

For a more complex MLP network with more hidden

layers, there exists a back-propagation algorithm that

efficiently computes the neural Jacobians. The neural

Jacobian concept is a very powerful tool since it allows
for a statistical estimation of the multivariate and non-

linear sensitivities between input and output variables

in the model under study [Aires and Rossow, 2000].

Table 5 gives the mean neural Jacobian values for

the variables xk and Yi for the neural network NN1

with first-guess. The neural Jacobians are normalized

by the standard deviation of the respective variables

c_ x to enable comparison of the sensitivities
t. Oyl std(z_,)/

between variables with different variation characteris-

tics. These values indicate the relative contribution of

each input in the retrieval of a given output parameter.
The numbers correspond to mean global values which

may mask rather different behavior in various regions

of the globe.
Figure 6 presents some of the normalized neural Jaco-

bians for the surface temperature and the water vapor

for three ranges of Em at 19 GHz H polarization. De-

pending on the surface emissivity, the sensitivity of Ts

to different inputs c.hanges from larger sensitivity to 19

GHz vertical polarization for high emissivities to larger
sensitivity to the 85 GHz observations and the first-

guess information at low emissivities (Figure 6a). For
II'V retrieval, very different regimes are observed for

low and high water vapor amounts (Figure 6 b), from

larger sensitivity to the 85 GHz channel horizontal po-

larization for high water vapor amount to smaller sen-

sitivity for low water vapor contents. The same trend
is observed at 22 GHz. We have already commented on

the differences between local and global correlations in
Section 3.3. In contrast to a linear regresssion-type al-

gorithm that fits a mean state mapping between inputs

[Table 5 ]

Figure 6 1



schexm' that include first-guess information. Its poten-

tial have been tested in the complex and ill-conditioned

problem of inversion of SSM/I microwave observations
over land. A data base to train the neural network

is derived from a global collection of coincident surface

and atmospheric parameters, extracted from the NCEP

reanalysis, from the ISCCP data. and from microwave

emissivity atlases previous]y calculated. The introduc-

tion of the first-guess information into t_e neural net-

work has a considerable impact on the results compared

to the network without first-guess.
The r.m.s, error of the surface temperature retrieval

is 1.3 K in clear sky conditions and 1.6 K in cloudy"

scenes over the globe. Microwave land surface temper-

ature retrieval presents a very attractive complement to
the infra-red estimates in cloudy areas. By combining

both measurements as we have done, a complete (clear

and cloudy days) time record of land surface temper-

ature can be produced. Water vapor is retrieved with
an r.m.s, error of 3.8 kg/m 2 in clear conditions and

4.9 kg/m 2 in cloudy situations. The r.m.s, error in liq-

uid water path is 0.08 kg/m 2. The surface emissivities
are retrieved with an accuracy, of better than 0.008 in

clear conditions and 0.010 in cloudy conditions, both

improvements on the original first-guess.

The analysis methodology' presented here and com-

pared to the better-known variational assimilation tech-
nique provides an illustration of a more general ap-

proach to the analysis of high-volume, multi-wavelength
satellite observations that may, have great potential.

The common practice of isolating one variable at a time
from such datasets breacks correlations among the mea-

surements and among the retrieved quantities. The

variational approach goes a step further by obtaining
simultaneous retrievals of many quantities form mul-

tiple measurements; however, as usually' implemented,

the variational analysis still does not account for corre-
lations of variables. The neural network approach is not

only able to accomodate strongly non-linear relation-

ships, but also is able to benefit from the correlations
to improve the retrievals. "Ihe neural network approach

also requires much less computation than the varia-

tionai assimilation approach. That the two methods are

conceptually dose, as we have shown, puts the neural

network approach on the same theoretical ground as the
better-studied variational analysis methods. However,

the fact that a simple neural network has been shown

to provide a statistical fit to any" function suggests that
what the trained network is doing is simulating (statis-

tically) the equations of the physical model, in this case
an inverse radiative transfer model. Thus, despite use
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Appendix A: Notation
X

X b

,.Cll

y(z)

yo

P

P,(_)

A(x)

B

E

F

E[.]
a,

zz

u:i3

gu'
W

Xk

13

D

DE

C_(W)

(w)

c (w)

(IT')

vector of physical variables to retrieve
estimate of z

first-guess a priori information for x
zzth estimate of x in variational method

= x b - x, first-guess error

radiative transfer function for the physical vari-

able x (also a vector)

SSM/I brightness temperature observations

SSM/I instrumental noise

generic probabi!ity distribution function

probability distribution function of rl

probability distribution function of ¢

derivative of y with respect to x
covariance matrix of retrieval error estimates in

variational method

= < d • ¢ >, covariance matrix of the first-guess
errors

=< r/ • r/ >, covariance matrix of the measure-
ment errors
covariance matrix of the radiative transfer model

errors

expectation operator

activity of neuron i

sigmoide function of the neural network

output of the neuron i

synaptic weight between neuron i and neuron j
neural network model

= {wij}, the set of the parameters of the neural
network

neural network input value on neuron i

neural network output value on neuron k

dataset sampling the probability distribution
functions

generic distance
Euclidean distance

theoretical quality criterion for classical neural

network learning phase

practical quality criterion for classical neural net-

work learning phase
theoretical quality criterion for classical neu-

ral network learning phase with first-guess
information

practical quality criterion for classical neural net-

work learning phase with first-guess information
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Appendix B: The 1-D Variational

Scheme

This method is described by" Rodgers [1976] and by
Eyre [19.9j. The unified notation of Ide et al. [1997]
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UsingBayestheorem,wecanrewritetile conditional
probabilityin (B3)as

P!_rly°,x _') - PIz'Y°':rt') = P(Y°'x_[x)P(x) (Bh)
p(yo,xb) p(yo,:r6)

It is often assumed, even if it is not always the case, that

y° and xb, the direct and virtual (first-guess) measure-

ments, are independent. In that case, wl_ can expand

the corresponding joint probability distribution func-

tions using the Bayes theorem

P(y°Ix)P(x _kx)P(x)

= p(yo)p(xe ) (B6)

We want to maximize this probability with respect to

x. If the probability distribution P(:c) of the physical

variables x is available, it is pos, tble to use it in the

general context of Bayesian estimition. If this pdf is

Gaussian, this would correspond to the addition of a

a--ix - i']tB-l[x - £'] in (BS), where :_ is the meanterm Oz
state of the physical variables and /_ is the covariance

matrix of the physical variables. Uhis approach is not

used in general in variational assin,ilation.

If no a priori information on the distribution P(x) is

available, this distribution is considered to be uniformly

distributed (i,e., no information), so this term can be

neglected during the maximizatio,_ process. The two

probabilities p(yo) and P(x b) are not dependent on x

so they can also be neglected. The maximum likelihood
estimator is then obtained at the minimum of minus

the log of the two remaining probabilities. Assuming
that the minimum is unique, the optimal solution is

characterized by

Ozo_[P(v°l:_)P(zblz)]
Ox = 0. (B7)

These probabilities need to be rewritten in order to

extract the independent random variables invoh, ed in

the model. Note p(y°lx) = P(y°[y(x)) since the the-
oretical radiative t[ansfer function y is not a stochas-

tic function. So P(y°Ix) = P_(y° -y), where P, is

the probability distribution function of the instrumen-
tal noise and the forward model error. Furthermore,

P(y°ix) = P,_[H(xr_)(x - xn) + (y(xn) -- yo)] using re-
lation (B1). Also P(xbIx) = P._(z b - x) where P_ is the

probability distribution function of the first-guess error

Assuming that the errors in the observations, the di-

rect radiative transfer model, and the a priori first-guess
information are unbiased, uncorrelated, and have Gaus-

sian distributions, expression (BT) is equivalent to



two pieces of information. If these matrices are not

sufficiently precise, oi if the varlabi]ity of the matrices

with atmospheric situations is not sufficiently sampled,

an "'empirical" weight has to be determined.
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Table1. Comparisonoftile variationalandneuralnetworkinversionschemes.

Variationalmethod Neuralnetworkinversion

Observation/ measurement

First-guess a priori information
Retrieved variable

Direct model used

Inverse model

Model

Quality criterion
Dataset of observations

Direct model errors

First-guess error

Observation error

Inversion type

9 °

x b

.T

RTM. used during the inversion

linearized locally

v(z) = y(z.) + H(z,,)(a- - z_)
f f _ P_xty°,,:b)
Used to estimate the first-guess
error covariance matrix B

Assumed to be Gaussian:

with error covariance matrix F

Assumed to be Gaussian:

with error covaziance matrix B

Assumed to be Gaussian:

with error covariance matrix E

Local inversion: inversion

process for each observation

9 °

x b

x

RTM, used during the construction of 8.
if no collocated data.set exists

non-linear, global

non-linear: x = .q,,,(z _, y°)
1 o

5 fffDE(gW(Z_,Y°)z): P_z,y ,F)
Used to sample the pdfs

Already sampled in the dataset,

if B is simulated by a RT model

No constraint, simulated using true

and first-guess solution datasets

No constraint, depends on instrument,

supposed to be Gaussian in this stud),, E
Global inversion: estimation of the

inverse model once and for all



Table3. R.M.S.errorresultsforfirst-guessandretrievals.

observation NN1 NN1 NN2 NN2
orfirst-guessclearwithout clearwith cloudywithout cloud,,"with

errors first-guessfirst-guess first-guess first-guess

TbSSMI19GHzV (K)
TbSSMI19GHzH (K)
TbSS.\II22GHzV (K)
TbSSMI37GHz%'(K)
TbSSMI37GHzH(K)
TbSSMI85GHzV (K)
TbSSMI85GHzH(K)
Taa(K)
Tcb(K)

Tsb(K)
L\Vpb(kg.m-2)
W\'a(kg.m-2)
Em19GHzV
Em19GHzH
Em 22 GHz V

Em 37 GHz V

Em 37 GHz H
Em 85 GHz V

Em 85 GHz H

060

0.60

0.60

0,60

0.60

0.60
0.60

3.00

2.00

4.00

40 7c

0.016

0.018

0.018

0.015

0.018
0.020

0.023

3.47

533

0.012

0.011

0,013

0.012

0011
0.015

0.016

°, .

1.34

°.,

383

0004

0.004

0.005

0.004

0.005

0.006

0.008

3.31

0.09

6.86

0.012

0.012

0.013

0.012

0.013

0.016

0.018

1.57

0.08

4.90

0.006

0.006

0.006

0.006

0.006

0.009

0.010



Table 5, Globalmeanneuralsensitivities.
Tsurf Vap-int Eml Em2 Em3 Era4 Era5 Em6 Era7

Tsurf .17 -.13 -.17 -.11 -.16 -.19 -.10 -.12 -.06
Vap-int -.04

TB1 .21
TB2 .14
TB3 .09
TB4 .21
TB5 .28
TB6 .25
TB7 -.21 2.30
Era1 -.t2 .06
Em2 -.12 -.02
Em3 -.09 .05
Era4 -.i0 .02
Era5 -.12 -.05
Em6 -.05 -.05
Era7 -.05 -.15
Ttay -.03 .07

.33 .04 .00 .04 .03 -.02 -.04 -.08

.18 .58 .02 .47 .13 -.21 -.19 -.17

.32 -04 .88 -.17 -.38 .09 -.22 -30
-.78 .05 -.09 .16 -.24 -.09 -.57 -.24
-,04 .17 -.30 " .I0 .72 .05 .50 -.03
-.95 -,35 .19 -.26 .04 .79 -.22
-,20 -.38 -.13 -,30 -.09 -.28 .89

.64

.04

.03 -.22 .08 -.17 -.03 -.21 .36

.14 .08 .i5 .15 .07 .13 .07

.13 A1 .14 .15 .10 .15 .10

.11 .06 .14 .12 .06 .14 .08

.11 .07 .12 .14 .08 .14 .07

.12 .10 .14 .16 .11 .16 .12

.06 .05 .08 .08 .05 .17 .11

.06 .06 .09 .09 .08 .20 .19

.00 .00 -.01 -.01 -.01 -.06 -.03



Plate 1. Retrieved fields of a) Ts in K, b) Em 19 GHz
horizontal polarization, e) II'I" in kg/m 2, and d) LII'P

in kg/m" for June ll, 1993, from SSM/I observations
with the F10 and Fll satellites.

Plate 1. Retrieved fields of a) Ts in K, b) Em 19 GHz horizontal polarization, c) II'V in
kg/m 2, and d) LIVP in kg/m 2 for June 11, 1993, from SSM/I observations with the F10 and
Fll satellites.



Figure 2.

Figure 2.

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0,005

0

0N-[5N

30N-45N ...........!_,_! _,5,..........
/ I'

! •

b

260 270 280 290 300 310 320 330 340 350

TEMP. CLOUD !K)



St kl _CE rE_II'_I_'tLRE

4-1 CLE_ -- /

t CLEAR<t(; .... 14 f2LOl_t_

CLUL D/I'_ ....

L

_!_1=_=_ _::__......
I

_I0 IllO 150 2lsll

LEARNING ITEKATION._

_ATEM "v' A I'0 II

I._ ! CLF:A[4 --

X _ CLLA _'_ G ......

L CLOLI_

_ C LO_._t_I_ G .....

L6

_t ¸¸ ..................................................

3.._,

230 U _ I1_ I _ 2_

LEAR_,ING ITERATIONS

l

LIQ!,. ID 'II"ATER P_.l I1

012,

fill!

O.II

i i.lii#

OO_5,

u_

CLOt l)_ --

CLOL lifT(; ......

......................

_I IOO 150 200

LEARNING ITERATIONS

002

O_OIA

ll.oI6

LOll

i
_ 1+012

_ _.Ol

EMLSSI%IT_ I_GIIi II

CLEAR --
CLEAWFG .......

CLOLD_

CLOUD, fiG --

LEARNING ITEIL(TIONS

23O

Figure 4.

Figure 4.



.85<Em2<.90 .90<Em2<.95 .95<Em2

E,-

E--

@-

- /V

- i

i /[ I _._l . !

_ , .28 L-

fl '. I

i, _/ , J
> .81 t .21

.6 - ,

.4 - t

"_ .2 FJ.o _ \_ L;
.0 .l .2 .3 .4 .5

•,5I
I.23 H

L

.20 H

09

Ts sensitivi y

(a)

Figure 6.

Figure 6.

.85<Em2<.90 .90<Em2<.95 .95<Em2

[... - II

_ '" i_/ _ '

: _ _i - ii _tli

b .... I

-5 0 5

WV sensitivity

WV<30kg/m2 ..... WV>30kg/m2

(b)



PlaLe 1

60 _-'_"'_ -'_IB_._,', _ '_:::_-. d"_ _t "'-%_ -, 303

L --='- ,_=-';_,._. _ _.--_-,,.,--,qt'_"__J _oo

40 P I-. ,_,>.¢,r-,,-- _ e ",;' ..!WW/..t" 4 _
20 '. _

288

'-_ 282

-20 2"_

-60 I I I I I _ I I I I_&'_'i ] "' I I I [ , " ! I I I _ 2'73

-160 -120 -80 -40 0 40 80 120 160

Longitude

June 11, 1993


